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Abstract – In this study, we implement a Monte-Carlo Tree Search (MCTS) for the Traveling Salesman Problem (TSP). We begin with the
implementation outlined by Shimomura and Takashima [2016], enhancing the approach with local optimization by implementing the 2-opt
algorithm. The proposed method significantly outperforms that of Shimomura and Takashima [2016] and appears to improve upon iterated
2-opt.

1 Background
1.1 Traveling Salesman Problem
Consider a set of n cities v1, ..., vn on a plane. Let G be the
complete graph with cities as vertices and edges weighted by
the integer part of the Euclidean distance between cities (1).

d(vi, vj) =

⌊√
(xi − xj)2 + (yi − yj)2

⌋
(1)

A tour π = (a1, ..., an) is defined as a circuit that passes through
each vertex exactly once, with the weight w defined as:

w(π) =

n−1∑
i=1

d(ai, ai+1) + d(an, a1)

The Traveling-Salesman Problem (TSP) for n cities aims to
find the minimum weight tour πm in G.

1.2 2-opt Algorithm
The 2-opt algorithm is a local optimization heuristic for TSP.
Beginning with a tour π, it looks for edges (ai, ai+1) and
(aj , aj+1) such that their removal and replacement with (ai, aj)
and (ai+1, aj+1) result in a reduced weight of the tour. After
an iteration of 2-opt:

π = a1, . . . , ai, ai+1, . . . , aj , aj+1, . . . , an

transforms into

π′ = a1, . . . , ai, aj ,aj−1, . . . , ai+2, ai+1, aj+1, . . . , an

if w(π′) < w(π). The process is shown in figure 1. Once no
such (i, j) pairs can be found, the algorithm terminates, and
the round is declared 2-optimized. An example of applying the
2-opt algorithm is depicted in figure 2.

Empirical results in Table 3, provided by Johnson and Mc-
Geoch [1997], show that a 2-optimized tour has an average er-
ror of less than 5% compared to the exact solution. This leads
to defining the iterated 2-opt heuristic as outlined in Algorithm
1.

FIG. 1: A modification after one iteration of 2-opt. Dashed
lines symbolize a path connecting 2 cities.

(a) Random tour (b) Random tour after 2-
optimization

FIG. 2: 2-optimization of a random tour

1.3 Monte-Carlo Tree Search

Consider an agent playing a game, initially in state E0. The
agent must choose an action a0,i0 , which leads to state E1, fol-
lowed by actions a1,i1 , . . . , an−1,in−1

, culminating in a final
state En. The goal is to determine the sequence maximizing
the score w attributed to En. The Monte-Carlo Tree Search
(MCTS) is a probabilistic approach to this challenge, iteratively
constructing a tree of potential states, with the nodes of the tree
representing different game states.

Monte Carlo Tree Search (MCTS) is an algorithm proposing
a probabilistic approach to the problem at hand. Iteratively, a
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Algorithm 1: Iterated 2-opt

1 best_tour ← [1, . . . , n];
2 wmin =∞;
3 while τ do
4 π ← random tour;
5 2-opt(tour);
6 if w(tour) < wmin then
7 copy π in best_tour;
8 wmin ← w(π)

9 return best_tour

search tree is constructed, where nodes represent different pos-
sible states. The children of a node Ei are the states reachable
by taking an action from Ei. In each node, we store the number
of visits and the average score w obtained by passing through
that node.

Algorithm 2 starts with a tree composed of the initial state
node R0, without children. Then, a loop is initiated and con-
tinues for a duration of τ . At each iteration:

1. Selection: Identify the most promising part of the tree for
expansion.

2. Create a new child node from the selected node using the
expand function.

3. Complete a random play-out starting from the new node
with the simulation policy until a final state.

4. Perform backpropagation by including the play-out score
in the selected node and its ancestors.

Throughout the algorithm, we keep track of the sequence of
actions yielding the best score.

Algorithm 2: MCTS Algorithm

1 root← R0;
2 max_w ← 0;
3 best_actions← empty list;
4 while execution time is less than τ do
5 node← select(root);
6 child← expand(node);
7 w, actions← simulate(child);
8 if w > max_w then
9 max_w ← w;

10 best_actions← actions

11 backpropagation(child, w)

12 return best_actions

1.3.1 Selection

Selection involves traversing the tree until finding a terminal
node or a node with an untried action, indicating an undevel-
oped child. To achieve this, we recursively select the child
Ei+1 of Ei that maximizes (2) following Algorithm 3.

Algorithm 3: Selection Function
Argument: the root of the tree R
Returns : the node to expand

1 node← R;
2 while node is not terminal and node has all its children

expanded do
3 node← child of node maximizing UCT

4 return node

UCT = wi+1 + Cexp · Cp

√
lnni

ni+1
(2)

Here, wi+1 is the average score of Ei+1, and the nj are the
number of times the jth node has been visited during selection.
Cexp is the exploration constant, and Cp is a constant propor-
tional to the problem size. If the scores w obtained are in [0, 1],
then Cp = 1. Cexp defaults to

√
2 but can be empirically ad-

justed to favor exploration or exploitation.
Indeed, this equation is split into two terms:

1. The green term is the exploitation term, reflecting the
quality of solutions that can be reached from this node.

2. The red term is the exploration term, favoring children
that have been overlooked during previous selections,
thereby encouraging the algorithm not to disregard paths
that might seem unpromising at first glance.

If a terminal node is reached, backpropagation is performed
with the score associated with the final state. Otherwise, the
tree is expanded by creating one of the missing children of the
final node and launching the simulation from there.

1.3.2 Simulation

Simulation from a node involves performing a sequence of ran-
dom actions starting from the state of the node until reaching a
final state. The score of this final state is then used in backprop-
agation. It should be noted that not all states traversed during
the simulation are stored in the tree to prevent memory satura-
tion.

1.3.3 Backpropagation

Backpropagation from a node Ei with a value w consists of in-
corporating w into the average score wi of Ei and incrementing
its ni, then doing the same for all its ancestors. More specifi-
cally, for node ∈ {Ei and its ancestors}, the following is per-
formed:

wnode ←
nnode × wnode + w(π)

nnode + 1

nnode ← nnode + 1



2 Applying MCTS to the TSP
2.1 Initial MCTS Implementation for TSP
We base our initial MCTS implementation for TSP on the ap-
proach by Shimomura and Takashima [2016].

2.1.1 TSP-specific formulation for MCTS

For the TSP containing n cities, we define a game state as a
partial path including p ⩽ n distinct cities. With the agent
starting with the path containing only the first city v1, each
successive action involves choosing an unvisited city. After
n − 1 actions, the agent completes a tour π by connecting the
last visited city back to v1, and the score is the weight w(π).

2.1.2 Adapted Selection Policy

Since the problem is one of minimization, not maximization,
we must reflect this in our selection policy. Hence, during se-
lection, rather than choosing the child that maximizes (2), we
will instead choose the one that minimizes (3).

UCT2 = wi+1 − Cexp · Cp

√
lnni

ni+1
(3)

There is no general method to define Cp, so Shimomura and
Takashima [2016] propose using either double the weight of the
minimum spanning tree of G or double the standard deviation
of the first n values found for w. The latter method is feasible
because UCT2 is used only after all the children of the root
have been expanded.

2.1.3 Adapted Simulation Policy

Simulation consists of randomly completing the partial path
with the remaining cities. There are two ways to select cities at
random. The first is to select completely at random, giving each
city an equal chance to be chosen. The second is to select each
subsequent city v′ after having chosen vd with the probability
according to (4).

P =
1

Z
· 1

dist(v′, vd)
where

Z =
∑

v possible

1

dist(v, vd)

(4)

This method is referred to as roulette by Shimomura and Takashima
[2016].

2.2 Related Work
The approach described in 2.1 represents the first implemen-
tation of MCTS applied to TSP. However, this method did not
yield very good results. Several tests on the att48 configura-
tion from TSPLIB (Reinelt [1991]) show that after 30 minutes,

a tour π with 20% relative error as defined in (5) is obtained,
which is not 2-optimized.

Relative Error(π) = Err(π) =
w(π)− wmin

wmin
(5)

Since then, there have been two noteworthy publications com-
bining MCTS and TSP (Fu et al. [2020], Xing and Tu [2020]).
These methods differ significantly from the method by Shimo-
mura and Takashima [2016], particularly because they involve
neural networks. My work focuses on improving Shimomura
and Takashima [2016]’s method, and the functioning of these
two new methods is described in Appendix A.

3 Integrating 2-opt within MCTS
Our contention that non-2-optimized solutions from the Shi-
momura and Takashima [2016] method could benefit from 2-
opt optimizations led to three distinct approaches for integra-
tion: hidden optimization, prepropagation, and optimized sim-
ulation.

3.1 Hidden Optimization
Hidden optimization involves applying the 2-opt algorithm to
tours post-simulation and backpropagation. This ensures that
the returned MCTS tour is 2-optimized. The modified algo-
rithm is shown in Algorithm 4.

Algorithm 4: MCTS with hidden optimization

1 while temps d’exécution inférieur à τ do
2 to_dev ← sélection(racine);
3 dev ← développer(to_dev);
4 π ← simulation(node);
5 rétropropagation(dev, w(π));
6 2− opt(π);
7 if w(π) < dmin then
8 dmin ← w(π);
9 πmin ← π

The inefficacy of the current method is illuminated by code
profiling, with results showing that the algorithm dedicates 90%
of its runtime to 2-optimization, despite its limited utility in
Monte Carlo Tree Search (MCTS). Specifically, the 2-optimized
tour is not propagated through the tree.

3.2 Prepropagation
It was these findings that led to the introduction of the con-
cept of prepropagation. This approach involves injecting the
2-optimized tour into the tree. Starting from the root, the tree
is descended by following the cities of the 2-optimized tour,
updating the average weight wi and visit count ni of each en-
countered node, or creating them if they do not exist. This de-
scent stops upon encountering the need to create a node whose



depth exceeds prof , where prof is the depth of the node devel-
oped after selection. This process is encapsulated in Algorithm
5.

Algorithm 5: Prepropagation Algorithm

1 Function Prepropagate(R, π, prof):
2 Function Auxiliary(node, i):
3 wnode ← (nnode×wnode+w(π)) / (nnode+1);
4 nnode ← nnode + 1;
5 if node is not terminal and the child F of node

representing the choice of city π[i+ 1] is
developed then

6 Auxiliary(F , i+ 1);
7 else if i < prof then
8 create F ;
9 Auxiliary(F , i+ 1)

10 Auxiliary(R, 0)

3.3 Simulation Optimization

However, this method results in a significantly higher score be-
ing backpropagated through simulation as opposed to the one
that is prepropagated after 2-optimization. To counterbalance
this, the simulation phase is optimized with 2-opt. This is done
by preserving the portion of the tour generated by selection,
while performing 2-optimization on the remainder. More for-
mally, if the developed node is the pth city of the tour, then dur-
ing the 2-optimization, only pairs (i, j) with p < i and i+1 < j
are permitted. This optimization process is demonstrated in
Figure 3.

3.4 Adapting the Selection

Shimomura and Takashima [2016] employ w in their UCT2
formula. However, the objective of the Traveling Salesman
Problem (TSP) is not to find a combination of cities yielding
low average scores but to identify the single best solution. Re-
placing w with wbest, the minimal weight found from a given
node, therefore seems prudent. Empirical evidence supports
this: tree nodes minimizing w are distinct from those minimiz-
ing wbest. Furthermore, to expedite the tree’s deepening, we
set the exploration constant Cexp to 0.01. It is important to
note that altering the algorithm by Shimomura and Takashima
[2016] in this way significantly reduces its efficiency.

3.5 Final Algorithm

The modified algorithm, referred to as MCTS 2-opt, is outlined
in Algorithm 6. Changes and additions to the classic MCTS
approach by Shimomura and Takashima [2016] are highlighted
in orange.

(a) In green is the selection, in red is the simulation

(b) The tour after simulation optimization, with the selection portion left
intact

FIG. 3: Simulation 2-Optimization

Algorithm 6: MCTS+2-opt Algorithm

1 root← R0;
2 wmin ←∞;
3 πmin ← [1, . . . , n];
4 while execution time is less than τ do
5 to_develop← selection(root);
6 develop← expand(to_develop);
7 π ← simulation2-opt(develop);
8 backpropagation(develop, w(π));
9 2-opt(π);

10 prepropagate(root, π);
11 if w(π) < wmin then
12 wmin ← w(π);
13 πmin ← π

14 return πmin

4 Experimental Results
4.1 Experimental Conditions
The programming language selected for implementation is OCaml1.
Tests are conducted on a Linux server powered by an AMD
EPYC 7601 2.2 GHz processor with 8 GB of RAM. We gener-

1Source code available at: github.com/Butanium/monte-carlo-tree-search-
TSP



ate 128 random instances of the TSP, with optimal tours com-
puted using Gurobi Optimization, LLC [2022]’s solver.

4.2 Experimental Procedure
Each algorithm is tested 5 times on each of the 128 instances
with τ ∈ {10 s, 30 s}. The classic MCTS by Shimomura and
Takashima [2016] fails to converge swiftly, resulting in subpar
solutions. Nonetheless, it significantly outperforms Greedy
Random, which generates random solutions sequentially and
retains the best one. The MCTS + 2-opt corresponds to
Algorithm 6 without the adjustments discussed in 3.4, while
MCTS select + 2-opt includes them. These amendments
prove crucial in leveraging the quality of 2-optimized tours,
achieving a 50% reduction in mean relative error (5) compared
to the already impressive Iterative 2-opt.

erreur relative moyenneAlgorithme 10 s 30 s
MCTS select + 2-opt _ 0.2 %

MCTS + 2-opt 0.67 % 0.41 %
2-opt itéré 0.69 % 0.48 %

2-opt une fois 10 % _
MCTS classique 120 % _
Greedy Random _ 430 %

TAB. 1: Résultats expérimentaux pour 100 villes

5 Future Work
Primarily, the Cexp value seems to greatly influence algorith-
mic performance. However, uncertainties in selecting Cp pre-
vent precise determination of the optimal Cexp. For future re-
search, I intend to eliminate the need for constant Cp by em-
ploying UCT3 (outlined in Appendix A.1) during selection.

I am also interested in exploring different expansion poli-
cies, such as developing all children instead of only one, as
suggested by Xing and Tu [2020].

The 2-opt algorithm operates on average in O(n3 log(n))
time complexity according to Johnson and McGeoch [1997].
Employing a faster heuristic—even at the cost of some effi-
cacy—would allocate more time for MCTS to develop the tree.
Thus, I plan to evaluate alternative heuristics in place of 2-opt
to assess their outcomes.

Lastly, the sheer size of the search space for TSP (n!) hinders
MCTS from achieving satisfactory exploration depth. A possi-
ble remedy involves reducing the search space size. It would be
compelling to investigate algorithms that constrict this search
space and to integrate them with MCTS.
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Appendices
A Alternative MCTS Approaches for TSP

A.1 Xing and Tu [2020]
The technique proposed by Xing and Tu [2020] builds upon the
work of Shimomura and Takashima [2016] through the inte-
gration of a neural network. During the selection phase, when
considering the child node F of node, w is replaced with Q̂.
Let N denote the set of child nodes of node:

wmin = min
j∈N

wj

wmax = max
j∈N

wj

Q̂F =
wmax − wF

wmax − wmin

Consequently, the child node of node with the highest score
attains Q̂ = 1, while the lowest score corresponds to Q̂ =
0. During selection, the child node F that maximizes (6) is
chosen.

UCT3 = Q̂F + Cexp

√
lnnnode

nF
(6)
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This method eliminates the need for Cp, as Q̂ is confined within
the range [0,1].

Another distinction from Shimomura and Takashima [2016]
is that simulations are performed by a neural network, which is
tasked with estimating the length of the best tour that completes
the partial path obtained during selection. The authors bench-
mark their results against other neural network-based method-
ologies on problem instances with fewer than 100 cities.

A.2 Fu et al. [2020]
Fu et al. [2020] adopt a distinct definition of the TSP game.
A game state is characterized by a tour π. An action A is de-
fined as a set of edges ranging from 2 ⩽ k ⩽ 10, denoted
by cities (a1, b1, . . . , ak, bk, ak+1), where bi is the successor
of ai in π and ak+1 = a1. The action involves substituting
edges (ai, bi) with (bi, ai+1), thereby transforming π into πA.
MCTS is utilized to identify productive actions. This equates
to a selection of the ai since bi is predetermined by ai, and the
action is defined if ai = a1. The authors make their choice of
ai+1 solely based on bi. As a result, they do not build a tree but
use an n × n weight matrix instead. Here, Wi,j indicates the
likelihood of selecting vj following vi. Initialized by a neural
network, this matrix is meant to favor the paired indices (i, j)
most likely to be part of the optimal path. Any pairs initialized
with an excessively low value are permanently discarded and
never considered, significantly narrowing the search space. To
select ai+1 during the selection process, Fu et al. [2020] aim to
maximize UCT, replacing wj with Qbi,j and ni with the num-
ber of actions performed during MCTS.

Qbi,j =
Wbi,j

Ωbi

Ωbi =

∑
k ̸=bi

Wbi,k∑
k ̸=bi

1

Once MCTS identifies an action A that yields w(πA) < w(π),
the action is executed, and the MCTS process is resumed to
seek a new action that could further optimize πA. If no such
action is found to be satisfactory, π is replaced by a randomly
generated and 2-optimized tour π′. Subsequently, the MCTS
process is restarted.

The authors compare their results on configurations rang-
ing from 50 to 10,000 cities with those of other methods that
leverage neural networks and the LKH heuristic by Helsgaun
[2017]. Their method significantly outperforms other neural
network-based methodologies, though it falls short of exceed-
ing the performance of LKH.
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