
Terminology

Mathematical notations and definitions

• x : t : y = x+ t(y − x)

• x \ y \ z = y−x
z−x

• x [y] z = min(z,max(x, y))

• λ = mina Q(s, a) \ ℵ \ maxa Q(s, a)

• Gt =
∑∞

t′=t γ
t′rt′

• Q(s, a) = r(s, a) + γ E
s′∼(s,a)

V (s′)

• V (s) = E
a′∼π(s′)

Q(s′, a′)

Acronyms

AR: Aspiration Rescaling

DL: Deep Learning

DNN: Deep Neural Network

DRL: Deep Reinforcement Learning

DQN: Deep Q-Network

LRA: Local Relative Aspiration (represented by λ)

MAB: Multi-Armed Bandit

RL: Reinforcement Learning

SB3: Stable Baselines 3

1

Satisficing Reinforcement learning

Clément Dumas, under the supervision of Jobst Heitzig

August 2023

Abstract

Reinforcement Learning (RL) predominantly trains agents by max-
imizing the expected return of a reward function, which is an approx-
imation of the agent’s true utility. However, the relationship between
the reward and utility is not always straightforward, leading to scenarios
where reward maximization does not necessarily yield high utility. Such
scenarios are termed “reward hacking”. This report delves into the con-
cept of Satisficing Reinforcement Learning as a potential solution to this
issue.

Satisficing agents aim to reach a specific aspiration level, rather than
solely maximizing the reward. This concept was explored through the im-
plementation of variants of the Q-learning algorithm and its Deep Learn-
ing equivalent, with the primary goal of demonstrating the feasibility of
transforming maximizing agents into satisficers.

Preliminary results show promise in multi-armed Bandit environments.
However, the current implementation lacks the stability needed to be a
viable alternative to its maximizing counterpart.

1 Preliminaries

1.1 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning that focuses
on training agents to make optimal decisions through interaction with their
environment. The core idea of RL is that an agent learns from its experiences
by performing actions within an environment and receiving feedback in the form
of a scalar reward signal. The agent’s goal is to learn a policy, a probability
distribution over actions for each state, that maximizes the cumulative reward
over time.

In the RL paradigm, an agent interacts with an environment over a sequence
of discrete time steps. At each time step t, the agent observes the current state
st of the environment, selects an action at based on its current policy π, and
executes this action. The environment then transitions to a new state st+1 and
provides the agent with a reward signal rt+1. The agent’s objective is to learn
a policy that maximizes the expected sum of these reward signals, also known

2

as the return:

Gt =

∞∑
t′=t+1

γt′rt′ (1)

where γ ∈ [0, 1] is the discount factor that determines the present value of future
rewards.

The RL problem is typically formalized as a Markov Decision Process (MDP)
⟨S, r, T, γ⟩, defined by a set of states S, a set of actions A, a transition function
T (s, a, s′) = P(st+1 = s′|st = s, at = a), and a reward function r(s, a) =
E(rt+1|st = s, at = a).

1.2 Q-learning

Q-learning is a widely used and studied RL algorithm introduced by Watkins
and Dayan [1992]. It estimates the action-value function, denoted as Q(s, a),
for each state-action pair. The action-value function represents the expected
return for choosing a particular action in a given state and following a specific
policy thereafter. Likewise, we can also define the state-value function, denoted
as V (s), representing the expected return starting from state s:

V π(s, a) = Eπ(Gt|st = s) (2)

Qπ(s, a) = Eπ(Gt|st = s, at = a) (3)

Both V π and Qπ are governed by the Bellman equation as follows:

Qπ(s, a) = r(s, a) + γ E
s′∼(s,a)

V π(s′) (4)

V π(s) = E
a∼π(s)

Qπ(s, a) (5)

where π is the policy, s is the state, a is the action, and γ is the discount factor.
In Q-learning, a Q-table representing the Q values of each (state, action)

pair is randomly initialized. Then, the agent interacts with the environment,
using an ε-greedy policy, which selects the action with the highest estimated Q-
value with probability 1−ε and a random action with probability ε. This policy
encourages a balance between exploration of the environment and exploitation
of the current knowledge. The agent continuously updates its Q-table based on
the rewards it receives and the states it explores. The update rule for Q-learning
when, at time t, the agent chooses action at in state st and ended up in state
st+1 is given by:

yt = rt + γmax
a

Q(st+1, a) (6)

Q(st, at)← Q(st, at) + αt[yt −Q(st, at)] (7)

where y is the target Q value, αt is the learning rate, and rt is the reward
received after taking action at in state st. It is proven that over certain condition
on α, the Q-table will converge to the optimal Q-function, Q∗(s, a), which is
the maximum expected return achievable by the optimal policy. The whole
Q-learning algorithm is shown in algorithm 1 of appendix A.

3

1.3 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is a fusion of traditional Reinforcement
Learning and Deep Learning. In DRL, deep neural networks (DNNs) are em-
ployed as function approximators to estimate value functions or policies directly
from raw inputs. This eliminates the need for manual feature engineering that
is typically required in traditional RL, allowing DRL agents to autonomously
learn representations from raw data.

The primary motivations for using DNNs in RL are:

• Capability to Handle High Dimensionality: DNNs can automati-
cally extract relevant features from high-dimensional inputs, such as im-
ages, making them ideal for tasks like video game playing, robotics, and
autonomous driving.

• Generalization: DNNs have the ability to generalize across similar states,
thereby reducing the number of samples required to learn an effective pol-
icy.

• Scalability: DNNs can be scaled up to achieve better performance, which
is particularly beneficial for challenging RL tasks.

A notable example of DRL is the Deep Q-Network (DQN) algorithm intro-
duced by Mnih et al. [2013], which utilizes a neural network to approximate the
Q-function. Unlike traditional Q-learning that maintains a table of Q-values,
DQN trains a neural network to predict Q-values for all possible actions in a
given state.

Given a state s, the neural network produces a vector of action values
Q(s, ·; θ), where θ are the parameters of the network. The DQN learning rule is
inspired by the Q-learning update:

y = r + γmax
a′

Q(s′, a′; θ−) (8)

L(θ) = E[(Q(s, a; θ)− y)2] (9)

Where θ− represents the parameters of a target network, which are periodically
copied from the main network. This target network stabilizes learning by pro-
viding fixed Q-value targets. At each training step, gradient descent is applied
with a learning rate α to find the parameters that minimize the loss.

θ ← θ − α∇θL(θ)

To further stabilize DRL training, experience replay is often used. Instead
of learning from the most recent experience, the agent stores its experiences in
a replay buffer and samples mini-batches from this buffer to train the neural
network. This approach breaks the temporal correlation of consecutive experi-
ences and provides a more diverse set of training samples. Putting everything
together, we get the algorithm 2 of appendix A.

4

1.4 Reward hacking

However, RL, including its DRL variant, is not without challenges. One signif-
icant issue is the alignment problem, where the reward function used to train
the agent does not perfectly represent the true objective, leading to undesired
behaviors. One kind of failure is called reward hacking, where the agent finds
ways to maximize the reward without genuinely achieving the intended goal.

Designing rewards that closely align with the real utility remains a signifi-
cant challenge in RL, as highlighted by Amodei et al. [2016]. Theoretical work
by Zhuang and Hadfield-Menell [2021] demonstrates that maximizing the return
when the reward function does not capture the real utility can result in arbitrar-
ily low utility across certain hypotheses. Skalse et al. [2022] further illustrates
that finding a proxy aligned with the true utility in finite Markov decision pro-
cesses (MDP) is highly unlikely. Empirical instances of reward hacking in RL
have also been documented, as compiled by Krakovna et al. [2020]. An example
of such failure is shown in 1

Figure 1: The agent learned to circle to collect the green bonuses instead of
racing.

As we train increasingly advanced autonomous AI systems, it is crucial to
ensure that their objectives remain aligned with ours. This alignment becomes
even more critical as optimal policies tend to seek power, as noted by Turner
et al. [2023]. Skalse et al. suggest that one potential solution to this problem
could be to explore approaches not based on optimizing reward functions.

Our work on satisficing attempts to address this underexplored approach
to mitigating reward hacking. Several other strategies have been proposed to
address this issue. For instance, Brown et al. [2020] proposes detecting reward
hacking in the same way as detecting unseen strategies: as out-of-distribution.
While this approach shows promise in detecting undesired or surprising behav-
ior, it does not provide a solution for training agents to avoid over-optimizing
their proxies while yielding poor utility. Another strategy involves incorporat-

5

ing human input, as seen in Frye and Feige [2019], which builds on the work
of Christiano et al. [2017]. However, these methods are not perfect as the feed-
back given to the agent is not directly provided by a human due to efficiency
concerns, but by a reward model trained on human preferences. These reward
models are still proxies of real human beliefs and depend on the human’s abil-
ity to oversee the agent’s behavior. Both these problems have been empirically
observed. Gao et al. [2022] found that over-optimizing a specific human reward
model leads to worse performance, and Christiano et al. reported that some
humans were deceived by a robot arm that pretended to grab a Lego by moving
between the Lego and the camera. While there are ongoing efforts to enhance
human oversight, such as Bowman et al. [2022], it remains unclear whether these
issues can be fully resolved.

1.5 Satisficing

The term of satisficing was first introduced in economics by Simon [1956]. Ac-
cording to Simon’s definition, a satisficing agent with an aspiration ℵ1 will
search through available alternatives, until it finds one that give it a return
greater than ℵ. Satisficing objectives have been formalized in different ways by
Reverdy et al. [2016] for Multi-Armed Bandit (MAB) environments, and they
propose several algorithms with logarithmic or finite regret for each objective.
In those environments, satisficing has been used by Tamatsukuri and Takahashi
[2019] and Russo et al. [2017] to find a close to optimal policy faster.

Goodrich and Quigley [2004] use a satisficing version of Q learning to avoid
taking risks during exploration. There is no aspiration in this algorithm, instead,
it estimates the gain and the cost of an action and only consider it if the gain is
greater than the cost. Thus, it’s not addressing our maximizing reward concern.

Little research has been undertaken on implementing satisficing RL algo-
rithms that generalize to environments beyond the MAB setting. Moreover,
some work that has adopted the satisficing approach has actually used it to
maximize rewards, which is precisely what we aim to avoid. While the defini-
tion by Simon might offer interesting insights within the RL and DRL frame-
works, it fails to address our concerns about maximization. By his definition, a
maximizer would be classified as a satisficer.

Therefore, we introduce a novel concept of a satisficing agent. In our study,
an ℵ-satisficing agent or ℵ-satisficer does not seek gains exceeding ℵ. Instead,
it aims to achieve an expected gain of ℵ:

E G0 = ℵ

2 Local Relative Aspiration

In the context of Q-learning, both the maximization and minimization poli-
cies (i.e., selecting argmaxa Q(s, a) or argmina Q(s, a)) can be viewed as the

1read “aleph”, the first letter of the Hebrew alphabet

6

extremities of a continuum of LRAλ policies, where λ ∈ [0, 1] denotes the Local
Relative Aspiration (LRA). At time t, such a policy samples an action a from
a probability distribution π(st) ∈ ∆(A), satisfying the relation:

E
a∼π(st)

Q(st, a) = min
a

Q(st, a) : λ : max
a

Q(st, a) = ℵt (10)

Here, x : u : y represents the interpolation between x and y with a factor u,
defined as:

x : u : y = x+ u(y − x)

With this formulation, the agent satisfices ℵt at each time t. Setting λ = 0
corresponds to minimization, while λ = 1 corresponds to maximization.

The most direct method to determine π is to deterministically select a such
that Q(s, a) = ℵt. If no such a exists, we can define π to select a+t with
probability p and a−t with probability 1− p, where:

a+t = argmin
a:Q(st,a)>ℵt

Q(st, a) (11)

a−t = argmax
a:Q(st,a)<ℵt

Q(st, a) (12)

p = Q(st, a
−
t) \ ℵt \Q(st, a

+
t ,) (13)

where x \ y \ z denotes the interpolation factor of y relative to the interval be-
tween x and z. It’s defined as:

x \ y \ z =
y − x

z − x

Here, p is selected to satisfy (10).
What elevates the significance of this method is its similarity to Q-Learning/DQN,

especially since the update target resembles those in (7) and (8):

y = rt + γℵt+1 (14)

By using this update target and replacing a ← argmaxa Q(s, a) by a ← a ∼ π
with π defined above, we create two variations of Q learning and DQN called
LRA Q-learning and LRA-DQN. Furthermore, LRA Q-learning retains certain
properties of Q-learning. Another intern proved that for all λ, Q converges to
a function Qλ, with Q1 = Q∗.

Nevertheless, a direct relationship between the value of λ and the agent
performance across different environments remains elusive. If the actions in the
environment only affect the reward i.e. ∀s, s′, a, a′

P(s′|s, a) = P(s′|s, a′)

for example in an iterated MAB setup, EλG0 is linear in respect to λ:

EπλG0 = Eπ0G0 : λ : Eπ1G0

However as soon as the distribution of the next state is influenced by a, which
is the case in most environments, we can loose this property as shown in figure
2.

7

Figure 2: In this MDP, where si is the initial state and sf the terminal state,
EπλG0 = 20λ2

3 Aspiration Propagation

The inability to robustly predict agent performance for a specific value of λ
show that we can not build an ℵ-satisficer with LRA alone. The only certainty
we have is that if λ < 1, the agent will not maximize. However, it might be
so close to maximizing that it attempts to exploit the reward system. This
uncertainty motivates the transition to a global aspiration satisficing algorithm.
Instead of specifying the LRA, we aim to directly specify the agent’s aspiration,
ℵ0, representing the return we expect the agent to achieve. The challenge then
becomes how to propagate this aspiration from one timeframe to the next.
It is crucial that aspirations remain consistent as per (15), ensuring recursive
fulfillment of ℵ0.

ℵt = E
at

E
(rt,st+1)

(rt + γℵt+1) (15)

A direct approach to ensure consistent aspiration propagation would be to
employ a hard update:

ℵt+1 = (ℵt − rt)/γ (16)

However, this method of updating aspirations does not guarantee that the
aspiration remains feasible as defined in (17).

min
a

Q(st, a) ⩽ ℵt ⩽ max
a

Q(st, a) (17)

Ensuring feasibility is paramount because, at each step, the agent must be able
to select a policy that meets the aspiration. If the aspiration is consistently
feasible, applying (15) to t = 0 guarantees that E G0 = ℵ0.

To elucidate the importance of feasibility and demonstrate why hard updates
might be inadequate (since they do not ensure feasibility), consider the Markov
Decision Process (MDP) illustrated in figure 3. Assume the agent is parame-
terized by γ = 1 and ℵ0 = 10, and possesses a comprehensive understanding of
the reward distribution.

Upon interacting with the environment and reaching s0 after its initial ac-
tion, the agent’s return is 15, leading to a new aspiration of ℵ = −5. This
aspiration is no longer feasible, culminating in an episode end with G0 = 15.

8

Figure 3: si is the initial state and sf is the terminal state.

If the agent reaches s1, then ℵ1 = 9. Consequently, the agent selects a0 and
receives r = 9, ending the episode with G = 10. As a result, E G0 = 12.5 ̸= ℵ0.

3.1 Aspiration Rescaling

To address the aforementioned challenges, we introduce Aspiration Rescaling
(AR). This approach ensures that the aspiration remains both feasible (as per
(17)) and consistent (as per (15)) during propagation. To achieve this, we
introduce two additional values, Q and Q:

Q(s, a) = E
(r,s′)∼(s,a)

r + V (s′)

Q(s, a) = E
(r,s′)∼(s,a)

r + V (s′)

where

V (s) = max
a

Q(s, a)

V (s) = min
a

Q(s, a)

These values provide insight into the potential bounds of subsequent states.
The AR strategy computes λt+1, the LRA for the next step, at time t, rather
than directly determining ℵt+1. By calculating an LRA, we ensure the aspiration
will be feasible in the next state. Furthermore, by selecting it such that

E
(rt,st+1)∼(st,a)

min
a

Q(st+1, a) : λt+1 : max
a

Q(st+1, a)−
ℵt − rt

γ
= 0 (18)

we ensure consistency. More precisely, at each step, the algorithm propagates
its aspiration using the AR formula:

λt+1 = Q(st, at) \Q(st, at) \Q(st, at) (19)

Subsequently, we can compute the aspiration using the new LRA:

ℵt+1 = min
a

Q(st+1, a) : λt+1 : max
a

Q(st+1, a) (20)

9

which fulfills (18), as depicted in figure 4. The formal proof of the algorithm’s
consistency is provided in appendix C.

Figure 4: By choosing λt+1 = 0.5, the two aspirations have a mean of ℵt−rt
γ ,

ensuring consistency.

Implementing this algorithm introduces new challenges as Q and Q cannot
be derived from Q. Indeed, in most settings, we lack access to the distribution
of st+1 ∼ (st, at).

We also introduce a smoothing factor, µ, to make the sequence (λt)t more
continuous. When learning from the transition at time t, λ′ defined as

λ′ = λt+1 : µ : λt (21)

is used instead of λt+1 for the update target. Setting µ = 0 corresponds to no
smoothing, while µ = 1 represents the highest level of smoothing, completely
overriding λt+1. Smoothing can help prevent the agent from oscillating between
extremely low and high LRA values.

Combining these elements, we derive AR-Q learning and AR-DQN (refer to
algorithms 3 and 4 in appendix B). However, this presents several challenges.
The original DQN algorithm does not require Q values to be close to reality
to choose the optimal policy. It only requires that, for each state s, when
sorting the action set A based on the key function Q(s, ·), the resulting order
matches sortingA based on the key functionQ∗(s, ·). But to fulfill ℵ0, aspiration
rescaling demands exact Q values. Another complication arises as the three Q
estimators are interdependent, potentially leading to unstable learning.

10

3.2 Generalization of Aspiration Rescaling

At the internship’s conclusion, we tried a novel approach that we did not have
the opportunity to thoroughly explore. This method leverages the fact that in
the proof of AR’s consistency in appendix C, V + and V − do not necessarily
need to be maxa Q(·, a) and mina Q(·, a). Thus, we can use the Q functions
derived from any bounds V +/− in the aspiration rescaling. Those V s can serve
as “safety bounds” we want the Q values of our action to be between. We can
then actually derive Q from Q+, Q− and ℵ:

Q(st,ℵt, at) = Q−(st, at) [ℵt]Q+(st, at) (22)

where
x [y] z = min(z,max(x, y))

The rationale is that if the aspiration is included within the safety bounds,
our algorithm will, on average, achieve it, hence Q = ℵt. Otherwise, we will
approach the aspiration as closely as our bounds permit. This method offers
several advantages over our previous AR algorithms:

Adaptability: ℵ0 can be adjusted without necessitating retraining.

Stability: Q+ and Q− can be trained independently, offering greater
stability compared to training Q alongside both of them simultaneously.

Flexibility: Q+ and Q− can be trained using any algorithm as soon as
the associated V + and V − respect V −(s) ⩽ Q(s, a) ⩽ V +(s).

Modularity: There are minimal constraints on the choice of the action
lottery, potentially allowing the combination of satisficing with safety cri-
teria for possible actions.

For instance, we can use LRA to learn Qλ+

and Qλ−
for λ− < λ+ and use

them along with V +(s) = mina Q
+(s, a) : λ+ : maxa Q

+(s, a) and V − defined
analogously. This corresponds to algorithm 5 in appendix B.

4 Experiments

For all figures, unless otherwise stated, the Y-axis denotes E G0, averaged over
10 learning runs. Each run undergoes 100 evaluations to estimate E G0. The
standard deviation, averaged across these runs, is shown in a lighter shade.
Algorithms were implemented using the stable baselines 3 (SB3) framework
developed by Raffin et al. [2021]. The presented results utilize the DRL version
of the previously discussed algorithms, enabling performance comparisons in
more complex environments. The DNN architecture employed is the default
SB3 “MlpPolicy”. All environment rewards have been standardized such that
the optimal policy’s return is 1. The three environments used in the experiment
are presented in the next section.

11

4.1 Environments

4.1.1 Iterated MAB

In this environment, the agent can choose between different arms for Nround

times. Each arm gives a certain reward plus Gaussian noise. The observation
is k ⩽ Nround the number of rounds played. The optimal policy is to choose the
arm with the highest average reward.

4.1.2 Boat Racing

Originating from Krakovna et al. [2020], this gridworld environment rewards
the agent with r = 3 every time it lands on an arrow tile that aligns with the
arrow’s direction. Any other move incurs a reward of -1. The environment’s
layout is depicted in Figure 5. One optimal strategy would be to circle around
the environment to collect reward.

Figure 5: Boat racing gridworld (figure 4 in Krakovna et al. [2020])

4.1.3 Empty Grid

The Empty grid environment represents a vacant room, where the agent’s pri-
mary task is to navigate to the green goal square in the bottom right of the
room, as shown in figure 6. Achieving this yields a sparse reward, with a minor
penalty based on the steps taken. The agent can rotate left, right, or move for-
ward. The observation space encodes each tile as a an integer. Success grants
a reward calculated as

R = 1− 0.9 ∗ (step count/max steps)

while failure results in no reward. The episode ends when the agent reaches the
goal or upon a timeout. The optimal policy is to move to the bottom, turn left
and reach the goal. The fact that the reward is only given at the end of the
episode make it more complex to learn.

4.2 LRA-DQN

We conducted experiments to explore the relationships between G0 and λ. In
the MAB setup, as expected, the relationship appears linear, as seen in Figure
7a. In boat racing, the relationship seems quadratic, as shown in Figure 7b.

12

Figure 6: The minigrid environment

Figure 7c also suggests a quadratic relationship, but with noticeable noise and
a drop at λ = 1. Experiments with DQN showed that DQN was unstable in
this environment, as indicated by this decline. Unfortunately, we did not have
time to optimize the DQN hyperparameters for this environment. Overall we
can see that even in

(a) Iterated MAB (b) Boat racing (c) Empty grid

Figure 7: E G0 as a function of λ. The dashed line represents y=x. Bounds are
[0,1]

4.3 AR-DQN

Our experiment show that using a hard update, as described in (16), yielded
more stable results. The AR update is primarily unstable due to the inaccu-
racy of aspiration rescaling in the initial stages, where unscaled Q-values lead
to suboptimal strategies. As the exploration rate converges to 0, the learning
algorithm gets stuck in a local optimum, failing to meet the target on expec-
tation. In the MAB environment, the problem was that the algorithm was too
pessimistic about what is feasible because of too low Q values. the algorithm’s
excessive pessimism about feasibility, stemming from undervalued Q-values, was
rectified by subtracting Q(s, a) using (24). However, this modification causes
the algorithm to maximize rewards in the initial steps. Since the Q-value is small
when training starts, it incentivizes the agent to select the maximizing action

13

Figure 8: The scale ranges from 0 to 1, with 1 representing the maximum
achievable gain. Each (rho, mu) pair is evaluated using 10 aspirations

during these early stages. To study the performance of hard and AR updates,
we introduced a new hyperparameter, ρ, to interpolate between hard updates
and aspiration rescaling, leading to an updated aspiration rescaling function:

δhard = −rt/γ (23)

δAR = −Q(s, a)/γ + ℵt+1 (24)

ℵ ← ℵt/γ + δhard : ρ : δAR (25)

Here, ρ = 0 corresponds to a hard update, and on expectation, ρ = 1 is equiva-
lent to AR as per (20).

Figure 8 study the influence of ρ and µ on the performance of the algorithm.
The algorithm is evaluated using a set of target aspirations (ℵi0)1⩽i⩽n. For each
aspiration, we train the algorithm and evaluate it using:

Err =

√∑n
i (E Gi − ℵi0)2

n
(26)

This would be minimized by a perfect satisficing algorithm. As observed, having
a small ρ is crucial for good performance, while µ has a less predictable effect.
This suggests that aspiration rescaling needs further refinement to be effective.

4.4 LRAR-DQN

Results on LRAR-DQN confirm our hypothesis that precise Q values are essen-
tial for aspiration rescaling. After 100k steps, in both boat racing and iterated
MAB, the two LRA-DQN agents, Q+ and Q−, have already converged to their
final policies. However, the Q-estimator still underestimates the Q values. As
illustrated in figure 9, waiting for 1M steps does not alter the outcome with

14

100k steps 1M steps

(a) Iterated MAB

100k steps 1M steps

(b) Boat race

(c) Empty grid

Figure 9: On each graph, the X-axis is ℵ0. The colorscale represents ρ, from
red=0 to green=1

15

hard updates (ρ = 0), which depend less on the exact Q values. Nevertheless,
they enable AR (ρ = 1) to match its performance.

In our experiments, the LRAR-DQN algorithm exhibited suboptimal per-
formance on the empty grid task. A potential explanation, which remains to be
empirically validated, is the divergence in state encounters between the Q+ and
Q− during training. Specifically, Q− appears to predominantly learn behaviors
that lead to prolonged stagnation in the top-left corner, while Q+ seems to be
oriented towards reaching the exit within a reasonable timeframe. As a future
direction, we propose extending the training of both Q+ and Q− under the
guidance of the LRAR-DQN policy to ascertain if this approach rectifies the
observed challenges.

5 Conclusion

Throughout the duration of this internship, we successfully laid the groundwork
for satisficing DQN algorithms. These were implemented using Stable Baseline 3
(Raffin et al. [2021]), a distinguished open-source framework that offers state-of-
the-art RL algorithms. By adopting Stable Baseline 3, we ensure that, once fully
functional, satisficing algorithms can be readily assessed across a wide range of
environments, notably Atari games. Future work will focus on refining the DQN
algorithms, exploring the possibility of deriving satisficing algorithms from other
RL methodologies such as the Soft Actor-Critic as presented by Haarnoja et al.
[2018], and investigating the behavior of satisficers in multi-agent environments
both with and without maximizing agents.

6 Meta information

Throughout my internship, I dedicated a significant amount of time to coding
and experimenting with various strategies to enhance the stability of the al-
gorithms. While many of these strategies are not detailed in this report, it’s
worth noting that they didn’t always lead to notable improvements in algorithm
performance. To gain insights into the intricacies of the algorithms and under-
stand potential failure cases, I utilized Tensorboard, broadcasting metrics such
as loss and average gain during training, as illustrated in figure 10b. My expe-
rience also provided me with the opportunity to familiarize myself with Slurm,
enabling me to run experiments on the cluster concurrently. I also acquired pro-
ficiency in using Ray, a multiprocessing framework, which allowed me to train
multiple models simultaneously on my computer. My commit activity through-
out the internship, which offers a glimpse into my consistent engagement with
the project, can be viewed in figure 10a.

Every week, I actively participated in the lab’s ”jour fixe,” where I learned
about the work and challenges faced by other researchers. Notably, during one
of these sessions, I had the opportunity to present my own work and received
constructive feedback and suggestions. Additionally, I attended several confer-

16

ences on diverse subjects studied in different departments of the lab and those
presented by invited researchers. Of particular note, I attended a talk by Guil-
laume Falmagne, an ENS Cachan alumnus, on human collective behavior in
r/place, after which we had a discussion about ecosystem simulation.

Finally, I assisted my supervisor in the preparation and delivery of an on-
line conference talk, showcasing our collective research findings, which sparked
interesting insight and conversations.

(a) My GitHub contribution to our
repository

(b) An example of Tensorboard curves
from the Empty grid LRA experiment

References

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman,
and Dan Mané. Concrete problems in ai safety, 2016.

Samuel R. Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit,
Scott Heiner, Kamilė Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Christopher Olah,
Daniela Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson,
Jackson Kernion, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Lan-
dau, Kamal Ndousse, Liane Lovitt, Nelson Elhage, Nicholas Schiefer, Nicholas
Joseph, Noemı́ Mercado, Nova DasSarma, Robin Larson, Sam McCandlish,
Sandipan Kundu, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav
Fort, Timothy Telleen-Lawton, Tom Brown, Tom Henighan, Tristan Hume,
Yuntao Bai, Zac Hatfield-Dodds, Ben Mann, and Jared Kaplan. Measuring
progress on scalable oversight for large language models, 2022.

Daniel Brown, Russell Coleman, Ravi Srinivasan, and Scott Niekum. Safe
imitation learning via fast Bayesian reward inference from preferences. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 1165–1177. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/brown20a.html.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and
Dario Amodei. Deep reinforcement learning from human preferences, 2017.

17

https://github.com/pik-gane/stable-baselines3-contrib-satisfia/
https://github.com/pik-gane/stable-baselines3-contrib-satisfia/
https://proceedings.mlr.press/v119/brown20a.html

Christopher Frye and Ilya Feige. Parenting: Safe reinforcement learning from
human input, 2019.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model
overoptimization, 2022.

Michael A Goodrich and Morgan Quigley. Satisficing q-learning: Efficient learn-
ing in problems with dichotomous attributes. In 2004 International Confer-
ence on Machine Learning and Applications, 2004. Proceedings., pages 65–72.
IEEE, 2004.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor, 2018.

Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom
Everitt, Ramana Kumar, Zac Kenton, Jan Leike, and Shane Legg. Specifica-
tion gaming: the flip side of ai ingenuity. DeepMind Blog, 3, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning, 2013.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernes-
tus, and Noah Dormann. Stable-baselines3: Reliable reinforcement learning
implementations. Journal of Machine Learning Research, 22(268):1–8, 2021.
URL http://jmlr.org/papers/v22/20-1364.html.

Paul Reverdy, Vaibhav Srivastava, and Naomi Ehrich Leonard. Satisficing in
multi-armed bandit problems, 2016.

Daniel Russo, David Tse, and Benjamin Van Roy. Time-sensitive bandit learning
and satisficing thompson sampling, 2017.

Herbert A. Simon. Rational choice and the structure of the environment. Psy-
chological review, 63 2:129–38, 1956. URL https://api.semanticscholar.

org/CorpusID:8503301.

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger.
Defining and characterizing reward hacking, 2022.

Akihiro Tamatsukuri and Tatsuji Takahashi. Guaranteed satisficing and fi-
nite regret: Analysis of a cognitive satisficing value function. Biosys-
tems, 180:46–53, 2019. ISSN 0303-2647. doi: https://doi.org/10.1016/j.
biosystems.2019.02.009. URL https://www.sciencedirect.com/science/

article/pii/S0303264718304453.

Alexander Matt Turner, Logan Smith, Rohin Shah, Andrew Critch, and Prasad
Tadepalli. Optimal policies tend to seek power, 2023.

18

http://jmlr.org/papers/v22/20-1364.html
https://api.semanticscholar.org/CorpusID:8503301
https://api.semanticscholar.org/CorpusID:8503301
https://www.sciencedirect.com/science/article/pii/S0303264718304453
https://www.sciencedirect.com/science/article/pii/S0303264718304453

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, May 1992. ISSN 1573-0565. doi: 10.1007/BF00992698. URL
https://doi.org/10.1007/BF00992698.

Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned AI.
CoRR, abs/2102.03896, 2021. URL https://arxiv.org/abs/2102.03896.

19

https://doi.org/10.1007/BF00992698
https://arxiv.org/abs/2102.03896

A Q learning and DQN algorithms

Algorithm 1 Q-learning

Require: discount factor γ ∈ (0, 1], sequence of learning rates αt ∈ (0, 1], sequence of
exploration rate ϵt ∈ [0, 1]

1: Initialize Q(s, a) = 0, ∀s ∈ S, a ∈ A
2: for t = 0, . . . , T − 1 do
3: ▷ Act: ◁
4: with probability ϵt, at ← Explore(st), else at ← argmaxa Q(st, a)
5: (rt, st+1)← Env(at)
6: ▷ Learn: ◁
7: y ← rt + γmaxa Q(st+1, a) ▷ update target
8: Q(st, at) += αt

(
y −Q(st, at)

)
▷ update the Q-table

9: procedure Explore(s)
10: return a sampled uniformly from the action space

Algorithm 2 DQN

Require: Discount factor γ ∈ (0, 1], sequence of exploration rate ϵt ∈ [0, 1]
1: Initialize empty replay memory D
2: Randomly initialize action-value Neural network Q
3: Initialize corresponding target Neural network Q′ ← Q
4: Reset the environment and get the initial observation s0 ← resetEnv
5: for t = 0, . . . , T − 1 do
6: ▷ Act: ◁
7: with probability ϵt, at ← Explore(st), else at ← argmaxa Q(st, a)
8: rt, st+1, done← Env(at) ▷ Perform action at

9: if not done then
10: store transition (st, at, rt, st+1) in D
11: ▷ Learn: ◁
12: sample some minibatch B from D
13: for (sj , aj , rj , sj+1) ∈ B do
14: if done then
15: yj ← rj
16: else
17: yj ← rj + γmaxa Q

′(sj+1, a) ▷ update target
18: gradient descent on Q with loss (yj −Q(sj , aj))

2

19: every C steps: Q′ ← Q
20: procedure Explore(s)
21: return a sampled uniformly from the action space

20

B AR algorithms

Algorithm 3 AR-Q learning, Difference with Q-learning are highlighted in blue

Require: discount factor γ ∈ (0, 1], sequence of learning rates αt ∈ (0, 1], sequence of
exploration rate ϵt > 0, initial aspiration ℵ0 ∈ R, parameter µ ∈ [0, 1)

1: Initialize Q(s, a) = 0, ∀s ∈ S, a ∈ A
2: Initialize empty replay memory D
3: Initialize two further, tables Q, Q
4: s0 ← reset Env
5: λ0 ← mina Q(s0, a) \ℵ0 \ maxa Q(s0, a)
6: for t = 0, . . . , T − 1 do
7: ▷ Act: ◁
8: with probability ϵt, at ← Explore(st), else at ← Exploit(st,ℵt)
9: (rt, st+1, done)← Env(at)

10: if done then
11: ℵt+1 ← ℵ0
12: else
13: ℵt+1 ← RescaleAspiration(st, at, st+1) ▷ prepare next move
14: λt+1 ← mina Q(st+1, a) \ℵt+1 \ maxa Q(st+1, a)
15: ▷ Learn: ◁
16: λ′ ← λt+1 : µ : λt ▷ smoothen relative aspiration levels
17: v ← mina Q(st+1, a), v ← maxa Q(st+1, a)
18: v ← v : λ′ : v
19: yj ← rj + γv′, y

j
← rj + γv′, yj ← rj + γv′ ▷ update targets

20: Q(st, a) += αt

(
y −Q(st, a)

)
21: Q(st, a) += αt

(
y −Q(st, a)

)
22: Q(st, a) += αt

(
y −Q(st, a)

)
23: procedure Explore(s)
24: return a sampled uniformly from the action space
25: procedure Exploit(s,ℵ) ▷ draw a so that E

a
Q(s, a) = ℵ if possible

26: if exists a with Q(s, a) = ℵ then
27: return any such a
28: else if exists a with Q(s, a) > ℵ and a with Q(s, a) < ℵ then
29: a− ← argmaxa with Q(s,a)<ℵ Q(s, a)
30: a+ ← argmina with Q(s,a)>ℵ Q(s, a)
31: p← Q(s, a−) \ℵ \Q(s, a+)
32: with probability p, return a+, else return a−
33: else if exists a with Q(s, a) > ℵ then
34: return argmina Q(s, a)
35: else
36: return argmaxa Q(s, a)
37: procedure RescaleAspiration(st, at, st+1)
38: λt+1 ← Q(st, at) \Q(st, at) \Q(st, at)
39: return mina Q(st+1, a) : λt+1 : maxa Q(st+1, a)

21

Algorithm 4 AR-DQN, differences with DQN are highlighted in blue.

Require: initial observation o0, discount factor γ ∈ (0, 1], initial aspiration ℵ0 ∈ R,
parameter µ ∈ [0, 1)

1: Initialize empty replay memory D
2: Randomly initialize action-value neural network Q
3: Initialize corresponding target DNN Q′ ← Q
4: Randomly initialize two further, DNNs Q, Q
5: s0 ← reset Env
6: λ0 ← mina Q(s0, a) \ℵ0 \ maxa Q(s0, a)
7: for t = 0, . . . , T − 1 do
8: ▷ Act: ◁
9: with probability ϵ, at ← Explore(st), else at ← Exploit(st,ℵt)

10: (rt, st+1, done)← Env(at)
11: if done then
12: ℵt+1 ← ℵ0
13: else
14: ℵt+1 ← RescaleAspiration(st, at, st+1) ▷ prepare next move
15: λt+1 ← mina Q(st+1, a) \ℵt+1 \ maxa Q(st+1, a)
16: if not done then
17: store transition (st, λt, at, rt, st+1, λt+1) in D
18: ▷ Learn: ◁
19: sample some minibatch B from D
20: for (sj , λj , aj , rj , sj+1, λj+1) ∈ B do
21: λ′ ← λj+1 : µ : λj ▷ smoothen relative aspiration levels
22: v′ ← mina Q

′(sj+1, a), v
′ ← maxa Q

′(sj+1, a)
23: v′ ← v′ : λ′ : v′

24: yj ← rj + γv′, y
j
← rj + γv′, yj ← rj + γv′ ▷ update targets

25: gradient descent on Q with loss
(
yj −Q(sj , aj)

)2
26: gradient descent on Q with loss

(
yj −Q(sj , aj)

)2
27: gradient descent on Q with loss

(
y
j
−Q(sj , aj)

)2
28: every C steps: Q′ ← Q
29: procedure Explore(s)
30: return a sampled uniformly from the action space
31: procedure Exploit(s,ℵ) ▷ draw a so that EaQ(s, a) = ℵ if possible
32: if exists a with Q(s, a) = ℵ then
33: return any such a
34: else if exists a with Q(s, a) > ℵ and a with Q(s, a) < ℵ then
35: a− ← argmaxa with Q(s,a)<ℵ Q(s, a)
36: a+ ← argmina with Q(s,a)>ℵ Q(s, a)
37: p← Q(s, a−) \ℵ \Q(s, a+)
38: with probability p, return a+, else return a−
39: else if exists a with Q(s, a) > ℵ then
40: return argmina Q(s, a)
41: else
42: return argmaxa Q(s, a)
43: procedure RescaleAspiration(st, at, st+1)
44: λt+1 ← Q(st, at)) \Q(st, at) \Q(st, at)
45: return mina Q(st+1, a) : λt+1 : maxa Q(st+1, a)

22

Algorithm 5 LRA based Rescaling Deep Q-Networks (LRAR-DQN)

Require: initial state s0, discount factor γ ∈ (0, 1], exploration schedule ϵ(t),
local relative target bounds λ < λ ∈ [0, 1], rescaling rate ρ ∈ [0, 1]

1: initialize function approximators Q−(s, a) and Q+(s, a)
2: let V −(s) ≡ mina Q

−(s, a) : λ− : maxa Q
−(s, a) and V +(s) ≡

mina Q
+(s, a) : λ+ : maxa Q

+(s, a)
3: ▷ Learn functions Q−, Q+ based on λ−, λ+ via LRA-DQN ◁
4: learn Q− and Q+ with targets Q−(s, a) = E

(r,s′)∼(s,a)

(
r + γV −(s′)

)
and

Q+(s, a) = E
(r,s′)∼(s,a)

(
r + γV +(s′)

)
5: ▷ Derive from them the aspiration-parameterized state-value function Q: ◁
6: put Q(s,ℵ, a) ≡ Q−(s, a) [ℵ]Q+(s, a)
7: ▷ Deployment: ◁
8: deploy the agent defined by Deploy(), using the functions Q−, Q+, Q
9: procedure Deploy(ℵ0)

10: s← EnvReset(); ℵ ← ℵ0
11: while True do
12: ℓ← ActionLottery(s,ℵ) ▷ action lottery and action
13: Sample action a ∼ ℓ
14: (r, s′,done)← EnvStep(a) ▷ act, get reward, observe
15: if done then
16: Break
17: else
18: ℵ ← PropagateAspiration(s,ℵ, a, r, s′) ▷ prepare next step

19: procedure ActionLottery(s,ℵ)
20: ℵ̃ ← V −(s) [ℵ]V +(s) ▷ Ensure ℵ is feasible
21: among those lotteries ℓ ∈ ∆(A) with Q(s,ℵ, ℓ) = ℵ̃, ▷ meet target in ex-

pectation
choose one based on additional safety criteria and return it

22: procedure PropagateAspiration(s,ℵ, a, r, s′)
23: return V −(s′) :

(
Q−(s, a) \ q \Q+(s, a)

)
: V +(s′)

C Consistency of Aspiration Rescaling

Let V − and V + be functions defining upper and lower bounds for Q, verifying
∀s, a:

V −(s) ⩽ Q(s, a) ⩽ V +(s) (27)

We can then define

Q−(s, a) = E
(r,s′)∼(s,a)

r + V −(s′) (28)

Q+(s, a) = E
(r,s′)∼(s,a)

r + V +(s′) (29)

23

Which therefore verify

Q−(s, a) ⩽ Q(s, a) ⩽ Q+(s, a) (30)

For example, in AR V +(s) = maxa Q(s, a), V −(s) = mina Q(s, a), Q+ = Q and
Q− = Q.

In the following proof all E are meant E(rt,st+1)∼(st,at) if not specified. We
want to show that when the aspiration is propagated like this:

λt+1 = Q−(st, at) \Q(st, at) \Q+(st, at)

ℵt+1 = V −(st+1) : λt+1 : V +(st+1)

And that the policy π is chosen at time t fulfills

E
a∼π

Q(s, a) = ℵt (31)

the aspiration remains consistent:

E
at∼π

E rt + ℵt+1 = ℵt (32)

By combining (31) with (32) we just need to prove that

E rt + ℵt+1 = Q(st, at)

First we rewrite λt+1 :

λt+1 = Q−(st, at) \Q(st, at) \Q+(st, at)

=
Q(st, at)−Q−(st, at)

Q+(st, at)−Q−(st, at)

using (28) and (29) we get

=
E V (st+1)− V −(st+1)

E V +(st+1)− V −(st+1)

Using this formula for λ we obtain:

E rt + V −(st+1) + λt+1(V
+(st+1)− V −(st+1))

= E
(
rt + V −(st+1)

)
+ λt+1E(V +(st+1)− V −(st+1))

= E rt + V −(st+1) + V (st+1)− V −(st+1)

= E rt + V (st+1)

= Q(st, at)

24

	Preliminaries
	Reinforcement Learning
	Q-learning
	Deep Reinforcement Learning
	Reward hacking
	Satisficing

	Local Relative Aspiration
	Aspiration Propagation
	Aspiration Rescaling
	Generalization of Aspiration Rescaling

	Experiments
	Environments
	Iterated MAB
	Boat Racing
	Empty Grid

	LRA-DQN
	AR-DQN
	LRAR-DQN

	Conclusion
	Meta information
	Q learning and DQN algorithms
	AR algorithms
	Consistency of Aspiration Rescaling

