Quick Start =========== .. meta:: :llm-description: Get started with nnterp in 5 minutes. Learn installation, model loading with StandardizedTransformer, and basic activation access patterns. This guide gets you up and running with ``nnterp`` in 5 minutes. Installation ------------ Basic Installation: .. code-block:: bash pip install nnterp For visualization: .. code-block:: bash pip install nnterp[display] Your First Model ---------------- Load any transformer model with a unified interface: .. code-block:: python from nnterp import StandardizedTransformer model = StandardizedTransformer("Maykeye/TinyLLama-v0") print("✓ nnterp working!") Basic Activation Access ---------------------- Access model internals: .. code-block:: python with model.trace("Hello world"): # Access layer outputs layer_5_output = model.layers_output[5] logits = model.logits.save() # Access attention and MLP components: with model.trace("Hello world"): attention_output = model.attentions_output[3] mlp_output = model.mlps_output[3] Direct Assignment ----------------- Set layer outputs directly: .. code-block:: python with model.trace("The capital of France is"): # Sum layers 3 and 5, set layer 10 to this value combined = model.layers_output[3] + model.layers_output[5] mlp_8 = model.mlps_output[8] # collect for later model.layers_output[10] = combined # Add MLP output from layer 8 to layer 12 output model.layers_output[12] = model.layers_output[12] + mlp_8 result = model.logits.save() Next Steps ---------- - :doc:`../basic-usage` - Learn the unified interface and module access - :doc:`../interventions` - Logit lens, patchscope, and steering methods